CCIE DATA CENTER ACI CORE

ACI APIC Clustering & Database Distribution

CREATED BY SALMAN ALHIARY, CCIE #56363

www.learnwithsalman.com

ACI Clustering Overview

- Cisco APIC appliance has two form factors:
 - Medium (M): supports up to 1200 Leaf edge ports.
- Large (L): supports more than 1200 Leaf edge ports.
- Cisco APICs are deployed as a cluster of servers based on the scalability requirements (up to 5 APICs in a single Pod and up to 7 APICs in Multipod).
 - For high availability, the minimum APIC cluster size should be 3, and larger clusters increase fabric scalability, not high availability.
 - APICs in a cluster discover each other via an LLDP-based discovery process.
- The ACI database is replicated and broken up into smaller database units called shards:
- The ACI database is broken into 32 shards. Each MO is part of a shard.
- A shard is replicated across 3 APICs regardless of the cluster size. So, every APIC in the 3-APIC cluster will have a copy of the 32 shards. However, this is not the case in larger APIC clusters.
- For each shard replica, there is one shard leader and two shard followers.
- One APIC in the cluster will be a shard leader for every individual shard.
- Shards are evenly distributed among the APICs in the cluster.

ACI Clustering and Database Distribution

- The 'Shard Leader' APIC is the only APIC that has write access to the shard.
 - Write requests are redirected to the shard leader, who then replicates (sync) the configuration changes to other APICs.
 - So if the admin is connected to APIC2 and tries to write into shard 1, which is led by APIC1, then APIC2 will redirect the write request to APIC1.
 - Read requests can be handled by any APIC (no redirect).

ACI Clustering and Database Distribution

- The 'Shard Leader' APIC is the only APIC that has write access to the shard.
 - Write requests are redirected to the shard leader, who then replicates (sync) the configuration changes to other APICs.
 - So if the admin is connected to APIC2 and tries to write into shard 1, which is led by APIC1, then APIC2 will redirect the write request to APIC1.
- Read requests can be handled by any APIC (no redirect).
- When the cluster size exceeds 3 APICs, we still have only three replicas for each shard.

ACI Clustering and Database Distribution

- The 'Shard Leader' APIC is the only APIC that has write access to the shard.
 - Write requests are redirected to the shard leader, who then replicates (sync) the configuration changes to other APICs.
 - So if the admin is connected to APIC2 and tries to write into shard 1, which is led by APIC1, then APIC2 will redirect the write request to APIC1.
- Read requests can be handled by any APIC (no redirect).
- When the cluster size exceeds 3 APICs, we still have only three replicas for each shard.
 - In the case of the 5-APIC cluster, for every Shard, we have 2 APICs that don't have a copy of it.
- If any three APICs go down, we will lose a shard (all three replicas), which means part of the database is completely lost.
- So, having more APICs doesn't mean high availability but more scalability.
- ACI database distribution benefits:
 - Shards provide faster reads and writes operations.
 - Load balancing and more scalable since write operations will get distributed across APICs (Leaders).

APIC Clustering Failure Considerations

- When APIC failure happens, all shards led by the faulty APIC will be evenly led by the active APICs.
 - If APIC 3 goes down, all shards led by APIC 3 will be led sequentially between APIC 1 and APIC 2.
- ACI allows ready-only access to a given shard when only one replica remains for that shard (minority state).
 - Losing two APICs in a 3-APIC cluster causes all shards to have only one replica, therefore, ready-only access to all shards (the whole Database).
 - Losing two APICs in a 5-APIC cluster causes some shards to have only one replica, therefore, inconsistent behavior across shards (some read-only, some read-write access).
- A failure of two APICs will cause some shards to be in the minority state, and losing three APICs will cause some/all shards to be lost.
- To avoid merging issues, no write request is allowed during the minority state.
 - No configuration change.
 - No vCenter update is handled.
 - No updates from switches are handled.

APIC Clustering Failure Considerations (cont.)

- Why do we need an odd number of active APICs in the cluster?
 - Since shard leaders are distributed in three APICs, we need the majority of replicas to agree on the shard leader in order to have write access during a single failure.
- Why do we need a minimum of three APICs?
 - One APIC: obviously, no fault tolerance. Data lost for a single failure.
 - Two APICs: Write unavailability with a single failure.
 - Three APICs: If one APIC is lost, the other two can elect a new leader and continue writing. If two APICs are lost, we go to minority mode.
- What if all APICs go down?
 - Traffic forwarding continues for new and existing sessions.
 - New VMM endpoint attachment and vMotion may or may not work depending on the configuration options.
 - If you have a configuration snapshot, you can recover the fabric (Fabric ID recovery) with the help of Cisco TAC.
- What if all APICs have not yet been installed (Discovered)?
 - When starting a new fabric, the shards are not in a minority state because the cluster has not yet been fully fit. (only APIC1 with one replica per shard).
 - APIC1 will create new replicas when a new APIC is added to the cluster.

ACI APIC Cluster Resize

- The Cisco APIC can expand and shrink a cluster by defining a target cluster size.
 - When a Cisco APIC cluster is expanded, some shard replicas shut down on the old APICs and start on the new APICs to help distribute evenly across all APICs in the cluster.
 - When removing an APIC from the cluster, we must remove the appliance at the end.

Standby APIC

- The standby Cisco APIC is a controller that you can keep as a spare, ready to replace any active APIC in a cluster in one click.
 - This controller does not participate in policy configurations or fabric management. So, no data is replicated to it.
 Is this a standby controller? [NO1: y

System Tenants Fabric Vir	tual Networking Admin	Operations	Apps	Integrations			
QuickStart Dashboard Controllers	System Settings Smart L	icensing Faults	History	Config Zones	Ac	tive Sessi:	ions
Controllers	Accept Controller	Node					
> C > Quick Start	Reject Controller			APIC Cluster	Stand	by APIC	1
🏶 Topology	Erase/Delete Controller				<i>с</i> ∧⊥	₹ 0	•
Controllers	Save as			(0 ≛	. X•	
∨ ⊜ apic1 (Node-1)	Post	IP	Mode	State			I.
Cluster as Seen by Node	Share	10.10.0.4	Standby Apic	Approved			
> 🗖 Containers	Open In Object Store Browser						
Equipment Fans			Right Click				

Who Is the Shard Leader For a Specific Shard ID?

clusterTime=<diff=-2924 common=2024-01-20T20:22:10.634+00:00 local=2024-01-20T20:22:13.558+00:00 pF=<displForm=0 offsSt=0 offsVlu=0 lm(t):3(2023-12-10T04:28:31.525+00:00)

Thanks for watching!

www.learnwithsalman.com

